725 research outputs found

    On the thermal dynamic behaviour of the helium-cooled DEMO fusion reactor

    Get PDF
    The EU-DEMO conceptual design is being conducted among research institutions and universities from 26 countries of European Union, Switzerland and Ukraine. Its mission is to realise electricity from nuclear fusion reaction by 2050. As DEMO has been conceived to deliver net electricity to the grid, the choice of the Breeding Blanket (BB) coolant plays a pivotal role in the reactor design having a strong influence on plant operation, safety and maintenance. In particular, due to the pulsed nature of the heat source, the Primary Heat Transfer System (PHTS) becomes a very important actor of the Balance of Plant (BoP) together with the Power Conversion System (PCS). Moreover, aiming to mitigate the potential negative impact of plasma pulsing on BoP equipment, for the DEMO plant is also being investigated a "heat transfer chain" option which envisages an Intermediate Heat Transfer System (IHTS) equipped with an Energy Storage System (ESS) between PHTS and PCS. Within this framework, a preliminary study has been carried out to analyse the thermal dynamic behaviour of the IHTS system for the Helium-Cooled Pebble Bed (HCPB) BB concept during pulse/dwell transition which should be still considered as the normal operating mode of a fusion power plant. Starting from preliminary thermal-hydraulic calculations made in order to size the main BoP components, the global performances of DEMO BoP have been quantitatively assessed focusing the attention on the attitude of the whole IHTS to smooth the sudden power variations which come from the plasma. The paper describes criteria and rationale followed to develop a numerical model which manages to simulate simple transient scenarios of DEMO BoP. Results of numerical simulations are presented and critically discussed in order to point out the main issues that DEMO BoP has to overcome to achieve a viable electricity power output

    Separating sets of strings by finding matching patterns is almost always hard

    Get PDF
    © 2017 Elsevier B.V. We study the complexity of the problem of searching for a set of patterns that separate two given sets of strings. This problem has applications in a wide variety of areas, most notably in data mining, computational biology, and in understanding the complexity of genetic algorithms. We show that the basic problem of finding a small set of patterns that match one set of strings but do not match any string in a second set is difficult (NP-complete, W[2]-hard when parameterized by the size of the pattern set, and APX-hard). We then perform a detailed parameterized analysis of the problem, separating tractable and intractable variants. In particular we show that parameterizing by the size of pattern set and the number of strings, and the size of the alphabet and the number of strings give FPT results, amongst others

    Improving performances of biomimetic wings with leading-edge tubercles

    Get PDF
    The present study aims investigating experimentally wing/blade geometries in which the leading edge is modified by the presence of artificial bumps, following examples in nature (“biomimetics”). Specifically, the tubercles observed in humpback whales are considered with a special focus on easy manufacturing and performance improvements, trying to overcome the observed lift coefficient reduction before stall in comparison with a standard wing. To this end, different tubercle geometries are tested, by measuring overall forces acting on the wings and by deriving detailed velocity fields using particle image velocimetry. Measurements indicate performance improvements for all trailing edge tubercle geometries here tested. In addition, the detailed analysis of mechanisms underlying the improvement of performances suggests that a triangular shape of the leading edge combines the advantages of easy manufacturing and improvements of pre-stall behaviour. So far, a simple mathematical model, describing tubercles as delta wings, is presented and verified by experimental data. The objective of the present work is focusing on the basic fluid-mechanics phenomena involved, to show that beneficial effects of tubercles are present even when tubercle details are simplified, in order to couple performance improvement and ease of assembly

    A novel clustering methodology based on modularity optimisation for detecting authorship affinities in Shakespearean era plays

    Full text link
    © 2016 Naeni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. In this study we propose a novel, unsupervised clustering methodology for analyzing large datasets. This new, efficient methodology converts the general clustering problem into the community detection problem in graph by using the Jensen-Shannon distance, a dissimilarity measure originating in Information Theory. Moreover, we use graph theoretic concepts for the generation and analysis of proximity graphs. Our methodology is based on a newly proposed memetic algorithm (iMA-Net) for discovering clusters of data elements by maximizing the modularity function in proximity graphs of literary works. To test the effectiveness of this general methodology, we apply it to a text corpus dataset, which contains frequencies of approximately 55,114 unique words across all 168 written in the Shakespearean era (16th and 17th centuries), to analyze and detect clusters of similar plays. Experimental results and comparison with state-of-the-art clustering methods demonstrate the remarkable performance of our new method for identifying high quality clusters which reflect the commonalities in the literary style of the plays

    Muon and Tau Neutrinos Spectra from Solar Flares

    Full text link
    Solar neutrino flares and mixing are considered. Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The observed and estimated total flare energy should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with, gamma,radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold of 113 MeV. The rarest tau appearence will be possible only for hardest solar neutrino energies above 3.471 GeVComment: 14 pages, 4 figures, Vulcano Conference 200

    Unveiling Clusters of RNA Transcript Pairs Associated with Markers of Alzheimer's Disease Progression

    Get PDF
    Background: One primary goal of transcriptomic studies is identifying gene expression patterns correlating with disease progression. This is usually achieved by considering transcripts that independently pass an arbitrary threshold (e.g. p<0.05). In diseases involving severe perturbations of multiple molecular systems, such as Alzheimer's disease (AD), this univariate approach often results in a large list of seemingly unrelated transcripts. We utilised a powerful multivariate clustering approach to identify clusters of RNA biomarkers strongly associated with markers of AD progression. We discuss the value of considering pairs of transcripts which, in contrast to individual transcripts, helps avoid natural human transcriptome variation that can overshadow disease-related changes. Methodology/Principal Findings: We re-analysed a dataset of hippocampal transcript levels in nine controls and 22 patients with varying degrees of AD. A large-scale clustering approach determined groups of transcript probe sets that correlate strongly with measures of AD progression, including both clinical and neuropathological measures and quantifiers of the characteristic transcriptome shift from control to severe AD. This enabled identification of restricted groups of highly correlated probe sets from an initial list of 1,372 previously published by our group. We repeated this analysis on an expanded dataset that included all pair-wise combinations of the 1,372 probe sets. As clustering of this massive dataset is unfeasible using standard computational tools, we adapted and re-implemented a clustering algorithm that uses external memory algorithmic approach. This identified various pairs that strongly correlated with markers of AD progression and highlighted important biological pathways potentially involved in AD pathogenesis. Conclusions/Significance: Our analyses demonstrate that, although there exists a relatively large molecular signature of AD progression, only a small number of transcripts recurrently cluster with different markers of AD progression. Furthermore, considering the relationship between two transcripts can highlight important biological relationships that are missed when considering either transcript in isolation. © 2012 Arefin et al

    QAPgrid: A Two Level QAP-Based Approach for Large-Scale Data Analysis and Visualization

    Get PDF
    Background: The visualization of large volumes of data is a computationally challenging task that often promises rewarding new insights. There is great potential in the application of new algorithms and models from combinatorial optimisation. Datasets often contain “hidden regularities” and a combined identification and visualization method should reveal these structures and present them in a way that helps analysis. While several methodologies exist, including those that use non-linear optimization algorithms, severe limitations exist even when working with only a few hundred objects. Methodology/Principal Findings: We present a new data visualization approach (QAPgrid) that reveals patterns of similarities and differences in large datasets of objects for which a similarity measure can be computed. Objects are assigned to positions on an underlying square grid in a two-dimensional space. We use the Quadratic Assignment Problem (QAP) as a mathematical model to provide an objective function for assignment of objects to positions on the grid. We employ a Memetic Algorithm (a powerful metaheuristic) to tackle the large instances of this NP-hard combinatorial optimization problem, and we show its performance on the visualization of real data sets. Conclusions/Significance: Overall, the results show that QAPgrid algorithm is able to produce a layout that represents the relationships between objects in the data set. Furthermore, it also represents the relationships between clusters that are feed into the algorithm. We apply the QAPgrid on the 84 Indo-European languages instance, producing a near-optimal layout. Next, we produce a layout of 470 world universities with an observed high degree of correlation with the score used by the Academic Ranking of World Universities compiled in the The Shanghai Jiao Tong University Academic Ranking of World Universities without the need of an ad hoc weighting of attributes. Finally, our Gene Ontology-based study on Saccharomyces cerevisiae fully demonstrates the scalability and precision of our method as a novel alternative tool for functional genomics

    Exploratory study of the EU-DEMO Water-Cooled Lithium Lead breeding blanket behaviour in case of loss of cooling capability

    Get PDF
    Within the framework of the European Roadmap to the realization of fusion energy, a strong international cooperation is ongoing to develop a Breeding Blanket (BB) system for the EU-DEMO reactor. Although it is still to be decided whether the DEMO in-vessel components should perform any safety function, the pursuing of robust blanket concepts able to handle upset and accidental loading conditions has been always seen as good practice in fusion reactor engineering to enhance the inherent plant safety performances. Amongst the several classes of events that might challenge the BB structural integrity, the large Loss of Coolant Accident is one of the most relevant because it usually leads to a fast loss of cooling capability of the structures. Due to the characteristic of the tokamak assembly, the behaviour of each blanket segment during a sudden loss of cooling capability does not depend only upon distinguishing features of the component itself. In fact, the overall transient can be governed by conditions established in surrounding elements, like adjacent blanket segments and vacuum vessel, as well as by the plasma shutdown strategies adopted to protect the reactor. The scope of the activity herein presented is to make a preliminary assessment of the intrinsic capability of EU-DEMO tokamak architecture to cope with the loss of cooling in the Water-Cooled Lithium Lead (WCLL) BB concept. Evaluation of BB thermal field in short and medium term under simplified, yet conservative, assumptions was carried out for four transient scenarios with the aim of investigating the response of the structure in case of: a) fast or soft plasma shutdown, and b) different blanket cooling schemes. Moreover, the WCLL BB thermo-mechanical response in the most critical time steps has been assessed. The obtained results shall help for future decisions on safety systems/action to be implemented to cope with accidents

    Development of a thermal-hydraulic model of the EU-DEMO Water Cooled Lithium Lead Breeding Blanket Primary Heat Transport System

    Get PDF
    The EUROfusion consortium is developing the project of a DEMOnstration Fusion Reactor (EU-DEMO) which would follow ITER in the pathway towards the quest for the exploitation of fusion energy. EU-DEMO has been conceived to deliver net electric power to the grid. Therefore, proper critical evaluations of the tokamak cooling and power conversion systems are needed because they play a pivotal role in the design and licencing of the overall plant. The EU-DEMO reactor will be based on the tokamak concept and, as such, it is supposed to undergo a pulsed duty cycle under normal conditions, which might challenge the qualified lifetime of the main equipment inducing undue thermal and mechanical cycling. Moreover, the EU-DEMO plasma control strategy postulates the possible occurrence of planned and off-normal plasma overpower transients that might jeopardise the structural integrity of the plasma facing components. It is, therefore, of paramount importance to have appropriate tools to reproduce the thermal-hydraulic behaviour of tokamak cooling systems during major operational and accidental scenarios in a realistic and reliable way. In this context, University of Palermo in cooperation with EUROfusion has developed a finite volume model of the Primary Heat Transport System (PHTS) feeding the EU-DEMO Water Cooled Lithium Lead Breeding Blanket (WCLL BB). The activity has been led following a theoretical–computational approach based on the adoption of the TRACE thermal-hydraulic system code. Particular attention has been paid to capturing all the main geometrical, hydraulic and heat transfer features characterising both in-vessel and ex-vessel components. Preliminary analyses have also been carried out to check the code's predictive potential in fusion relevant applications. Models, assumptions, and outcomes of the analyses are herewith reported and critically discussed
    corecore